Unconscious Learning versus Visual Perception: Dissociable Roles for Gamma Oscillations Revealed in MEG
نویسندگان
چکیده
Oscillatory synchrony in the gamma band (30-120 Hz) has been involved in various cognitive functions including conscious perception and learning. Explicit memory encoding, in particular, relies on enhanced gamma oscillations. Does this finding extend to unconscious memory encoding? Can we dissociate gamma oscillations related to unconscious learning and to conscious perception? We investigate these issues in a magnetoencephalographic experiment using a modified version of the contextual cueing paradigm. In this visual search task, repeated presentation of search arrays triggers an unconscious spatial learning process that speeds reaction times but leaves conscious perception unaffected. In addition to a high-frequency perceptual gamma activity present throughout the experiment, we reveal the existence of a fronto-occipital network synchronized in the low gamma range specifically engaged in unconscious learning. This network shows up as soon as a display is searched for the second time and disappears as behavior gets affected. We suggest that oscillations in this network shape neural processing to build an efficient neural route for learned displays. Accordingly, in the last part of the experiment, evoked responses dissociate learned images at early latencies, suggesting that a sharpened representation is activated without resort on learning gamma oscillations, whereas perceptual gamma oscillations remain unaffected.
منابع مشابه
BOLD Responses in Human Primary Visual Cortex are Insensitive to Substantial Changes in Neural Activity
The relationship between blood oxygenation level dependent-functional magnetic resonance imaging (BOLD-fMRI) and magnetoencephalography (MEG) metrics were explored using low-level visual stimuli known to elicit a rich variety of neural responses. Stimuli were either perceptually isoluminant red/green or luminance-modulated black/yellow square-wave gratings with spatial frequencies of 0.5, 3, an...
متن کاملDeficits in high- (>60 Hz) gamma-band oscillations during visual processing in schizophrenia
Current theories of the pathophysiology of schizophrenia have focused on abnormal temporal coordination of neural activity. Oscillations in the gamma-band range (>25 Hz) are of particular interest as they establish synchronization with great precision in local cortical networks. However, the contribution of high gamma (>60 Hz) oscillations toward the pathophysiology is less established. To addr...
متن کاملA magnetoencephalographic study of face processing: M170, gamma-band oscillations and source localization.
EEG studies suggested that the N170 ERP and Gamma-band responses to faces reflect early and later stages of a multiple-level face-perception mechanism, respectively. However, these conclusions should be considered cautiously because EEG-recorded Gamma may be contaminated by noncephalic activity such as microsaccades. Moreover, EEG studies of Gamma cannot easily reveal its intracranial sources. ...
متن کاملSpectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli.
In two experiments, magnetoencephalography (MEG) was used to investigate the effects of motion on gamma oscillations in human early visual cortex. When presented centrally, but not peripherally, stationary and moving gratings elicited several evoked and induced response components in early visual cortex. Time-frequency analysis revealed two nonphase locked gamma power increases-an initial, rapi...
متن کاملMEG-measured visually induced gamma-band oscillations in chronic schizophrenia: Evidence for impaired generation of rhythmic activity in ventral stream regions.
BACKGROUND Gamma-band oscillations are prominently impaired in schizophrenia, but the nature of the deficit and relationship to perceptual processes is unclear. METHODS 16 patients with chronic schizophrenia (ScZ) and 16 age-matched healthy controls completed a visual paradigm while magnetoencephalographic (MEG) data was recorded. Participants had to detect randomly occurring stimulus acceler...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cognitive neuroscience
دوره 21 12 شماره
صفحات -
تاریخ انتشار 2009